## metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# Bis(µ-2-cyanopyridine-N:N')bis-[(2-cyanopyridine-N)silver(I)] bis(tetrafluoroborate): an anionlinked molecular ladder

# Alexander J. Blake,\* Neil R. Champness, James E. B. Nicolson and Claire Wilson

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England Correspondence e-mail: a.j.blake@nottingham.ac.uk

Received 3 August 2001 Accepted 22 August 2001

In the title compound,  $[Ag_2(C_6H_4N_2)_4](BF_4)_2$ , the Ag<sup>I</sup> cations adopt distorted trigonal-planar coordination geometries. The Ag<sup>I</sup> centres are linked *via* two bridging 2-cyanopyridine ligands to give a centrosymmetric dinuclear complex in which the Ag<sup>I</sup> coordination environment is completed by monodentate non-bridging 2-cyanopyridine ligands. Bridging Ag.  $\cdot \cdot F(BF_2)F \cdot \cdot \cdot Ag$  interactions link the dinuclear cations into molecular ladders.

#### Comment

The title compound, (I), isolated during studies into the formation of  $Ag^{I}$  coordination polymers using pyridine and nitrile donors, exists as an air-stable colourless solid. An X-ray study confirmed the stoichiometry of the compound (Fig. 1). The  $Ag^{I}$  centres of the dinuclear  $[Ag_{2}(NCC_{5}H_{4}N)_{4}]^{2+}$  cation are related by an inversion centre, with each  $Ag^{I}$  atom occupying a distorted trigonal-planar environment involving one terminal and two bridging 2-cyanopyridine ligands. Thus, each  $Ag^{I}$  atom is coordinated by two pyridyl and one nitrile donor,



and sits 0.15 Å above the  $N_3$  plane. The  $BF_4^-$  anions sit both above and below the AgN<sub>3</sub> plane, displaying Ag···F interactions of 2.7029 (15) and 2.8443 (16) Å. Taking these longrange interactions into account, the Ag<sup>I</sup> cation adopts a trigonal-bipyramidal arrangement, with the F atoms of the



Figure 1

View of (I) showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, -y, -z.]

anion assuming apical positions;  $F \cdots Ag \cdots F = 170.95 (4)^{\circ}$ (Fig. 2). Thus, each  $BF_4^-$  anion bridges  $Ag^I$  centres to give a molecular ladder motif, which has been widely observed in coordination polymer chemistry (Withersby *et al.*, 1999), although not involving anion bridging as observed here. Such  $Ag \cdots FBF_3^-$  interactions are within the sum of the van der Waals radii of Ag and F, and have previously been shown to be structure determining in  $Ag^I$  coordination polymers of 1,4dithiane (Blake *et al.*, 2000).



#### Figure 2

View of the molecular ladder formed by  $Ag \cdots F$  interactions, which are represented by open lines. Left-hatched circles are Ag, right-hatched circles are N, dotted circles are B and cross-hatched circles are F atoms.

As a result of the  $Ag \cdots FBF_3^-$  interactions, two nitrile donors per cation remain uncoordinated, which is surprising considering the preference of Ag<sup>I</sup> for two- or four-coordinate environments and for N-donor ligands (Blake et al., 1999). However, the absence of coordinate bonds formed between Ag<sup>I</sup> and these pendant nitrile donors reinforces the significance of the Ag $\cdot \cdot FBF_3^-$  interactions. The pendant nitrile groups are directed toward an aromatic H atom of a pyridyl ring of an adjacent cation. However, the distances and angles associated with this interaction (Table 2) are at the limit of what can be considered a  $CN \cdot \cdot \cdot H(C)$  interaction (Desiraju & Steiner, 1999; Dhurjati et al., 1991; Reddy et al., 1993). An elongated  $\pi$ - $\pi$ -stacking interaction between pendant 2-cyanopyridine ligands on adjacent complexes is also observed, with a centroid-centroid separation of 4.080 Å and a plane-centroid separation of 3.697 Å (Janiak, 2000).

### **Experimental**

The title compound was prepared by adding a solution of AgBF<sub>4</sub> (0.01 mg, 0.05 mmol) in MeNO<sub>2</sub> (5 ml) to a solution of 2-cyanopyridine (0.011 mg, 0.1 mmol) in MeNO<sub>2</sub> (5 ml). Vapour diffusion of diethyl ether into the reaction solution afforded colourless sphenoidal crystals after ca 3 d.

#### Crystal data

| erystat aata                           |                                           |
|----------------------------------------|-------------------------------------------|
| $[Ag_2(C_6H_4N_2)_4](BF_4)_2$          | $D_x = 1.949 \text{ Mg m}^{-3}$           |
| $M_r = 805.80$                         | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/c$                   | Cell parameters from 4803                 |
| a = 8.3265 (7)  Å                      | reflections                               |
| b = 25.364 (2) Å                       | $\theta = 2.4 - 28.6^{\circ}$             |
| c = 7.0865 (6) Å                       | $\mu = 1.51 \text{ mm}^{-1}$              |
| $\beta = 113.427 \ (1)^{\circ}$        | T = 150 (2)  K                            |
| $V = 1373.3 (2) \text{ Å}^3$           | Sphenoid, colourless                      |
| Z = 2                                  | $0.33 \times 0.22 \times 0.14 \text{ mm}$ |
| Data collection                        |                                           |
| Bruker SMART1000 CCD area-             | 3224 independent reflections              |
| detector diffractometer                | 3035 reflections with $I > 2\sigma(I)$    |
| $\omega$ scans                         | $R_{\rm int} = 0.026$                     |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 29.0^{\circ}$         |
| (SADABS; Siemens, 1996)                | $h = -11 \rightarrow 11$                  |
| $T_{\min} = 0.641, \ T_{\max} = 0.717$ | $k = -32 \rightarrow 32$                  |
| 13 628 measured reflections            | $l = -9 \rightarrow 9$                    |

#### Table 1

Selected geometric parameters (Å, °).

| Ag1-N1                   | 2.2778 (19) | Ag1-F2 <sup>ii</sup>                   | 2.7029 (15) |
|--------------------------|-------------|----------------------------------------|-------------|
| Ag1-N11                  | 2.2455 (19) | Ag1-F3                                 | 2.8443 (16) |
| Ag1-N18 <sup>i</sup>     | 2.318 (2)   | -                                      |             |
| N1-Ag1-N11               | 138.04 (7)  | N11-Ag1-F2 <sup>ii</sup>               | 83.84 (6)   |
| N1-Ag1-N18 <sup>i</sup>  | 97.74 (7)   | N11-Ag1-F3                             | 87.63 (6)   |
| N1-Ag1-F2 <sup>ii</sup>  | 106.71 (6)  | N18 <sup>i</sup> -Ag1-F2 <sup>ii</sup> | 92.30 (6)   |
| N1-Ag1-F3                | 77.80 (6)   | N18 <sup>i</sup> -Ag1-F3               | 94.86 (6)   |
| N11-Ag1-N18 <sup>i</sup> | 122.80 (7)  | F2 <sup>ii</sup> -Ag1-F3               | 170.95 (4)  |
|                          |             |                                        |             |

Symmetry codes: (i) -x, -y, -z; (ii) x, y, z - 1.

#### Refinement

| 2                               | - 2 - 2 2                                                  |
|---------------------------------|------------------------------------------------------------|
| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.014P)^2]$                     |
| $R[F^2 > 2\sigma(F^2)] = 0.027$ | + 1.214 <i>P</i> ]                                         |
| $wR(F^2) = 0.058$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.30                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 3224 reflections                | $\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$  |
| 199 parameters                  | $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |
|                                 |                                                            |

## Table 2

Hydrogen interaction geometry (Å, °).

| $D - H \cdots A$                  | D-H                            | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------|--------------------------------|-------------------------|--------------|--------------------------------------|
| $C4\!-\!H4\!\cdot\cdot\!N8^{iii}$ | 0.95                           | 2.56                    | 3.184 (3)    | 124                                  |
| Symmetry code: (iii)              | $x - 1, \frac{1}{2} - y, z - $ | $-\frac{1}{2}$ .        |              |                                      |

All H atoms were included at geometrically calculated positions and constrained to ride at a distance of 0.95 Å from their parent C atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

The authors thank EPSRC for provision of a diffractometer and the University of Nottingham for a studentship (JEBN).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1494). Services for accessing these data are described at the back of the journal.

#### References

- Blake, A. J., Brooks, N. R., Champness, N. R., Cunningham, J. W., Hubberstey, P. & Schröder, M. (2000). CrystEngComm. Article 6.
- Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Dhurjati, M. S. K., Sarma, J. A. R. P. & Desiraju, G. R. (1991). J. Chem. Soc. Chem. Commun. pp. 1702-1703.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Reddy, D. S., Goud, B. S., Panneerselvam, K. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 663-664.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
- Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S. & Schröder, M. (1999). Inorg. Chem. 38, 2259-2266.